BRIEF COMMUNICATION

Electron Transfer between Eu³⁺ and Tb³⁺ in BaB₄O₇ Matrix

Yong Gao and Chunshan Shi¹

Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

Received October 3, 1995; in revised form December 11, 1995; accepted December 19, 1995

The BaB₄O₇: Eu, Tb phosphors are first synthesized in air atmosphere. We investigate their luminescent properties, and find that europium(II) and europium(III) can coexist in the BaB₄O₇: Eu phosphor. We observed that the relative intensity of europium(II) is increased when terbium(III) is incorporated. The electron spin resonance (ESR) spectra are carried out. The intensity of ESR peaks corresponding to europium(II) is also increased when terbium(III) is increased, so the valency state of europium is influenced by terbium(III). We explain these phenomena by an electron transfer mechanism. © 1996 Academic Press, Inc.

1. INTRODUCTION

It is well known that the most common valence state of rare earth ions is trivalent. Some ions are inclined to exist in an abnormal valency state, such as Sm^{2+} , Eu^{2+} , Yb^{2+} , Ce^{4+} , Pr^{4+} , and Tb^{4+} , because they all have more stable electronic configurations. We find that two rare earth ions, whose number of 4f electrons is seven or a multiple of seven, have conjugate electronic configuration, and we advanced that two conjugate electronic configuration ions tend to transfer an electron to get a more stable electronic configuration (1). For example,

$$\begin{aligned} \operatorname{Ce}^{3+}(4f^{1}) &+ \operatorname{Eu}^{3+}(4f^{6}) \to \operatorname{Ce}^{4+}(4f^{0}) + \operatorname{Eu}^{2+}(4f^{7}) \\ \operatorname{Tb}^{3+}(4f^{8}) &+ \operatorname{Eu}^{3+}(4f^{6}) \to \operatorname{Tb}^{4+}(4f^{7}) + \operatorname{Eu}^{2+}(4f^{7}) \\ \operatorname{Ce}^{3+}(4f^{1}) &+ \operatorname{Yb}^{3+}(4f^{13}) \to \operatorname{Ce}^{4+}(4f^{0}) + \operatorname{Yb}^{2+}(4f^{14}) \\ \operatorname{Tb}^{3+}(4f^{8}) &+ \operatorname{Yb}^{3+}(4f^{13}) \to \operatorname{Tb}^{4+}(4f^{7}) + \operatorname{Yb}^{2+}(4f^{14}). \end{aligned}$$

There has been growing interest recently in studies on luminescence of rare earth ions in alkaline earth borates (2-5). The divalent rare earth ions can be stabilized in

alkaline earth borates, especially Eu^{2+} activated alkaline borates.

In this paper, we report the luminescence and ESR properties of BaB_4O_7 : Eu, Tb phosphors which are synthesized in air atmosphere. We conclude that there is an electron transfer between Eu³⁺ and Tb³⁺ ions in the BaB₄O₇ matrix.

2. EXPERIMENTAL

The following starting materials are used for the preparation of BaB₄O₇: Eu, Tb phosphors: the purity of BaCO₃ and H₃BO₃ is AR, and that of rare earth oxides (Eu₂O₃ and Tb₄O₇) is 99.99%. The calculated amounts of reagents are thoroughly mixed and ground together; a 10% excess of the boric acid is used to compensate for the evaporation of B₂O₃ that is produced in high-temperature solid state reactions. The mixture is heated at 300°C for 3 h, then reground and reheated at 800°C for 9 h. All the samples are white powder.

The samples are checked by means of a Rigaku Denki "2028 D/max-IIB" diffractometer, using $CuK\alpha(\lambda = 0.1542 \text{ nm})$. X-ray powder patterns show that all samples are single structure.

The room temperature luminescence spectra of powder samples are carried out with a SPEX DM3000F spectrofluorometer using a xenon arc lamp as the excitation source.

The ESR spectra are obtained using an X-band spectrometer (JEOL model JES-FE-3AX), and the resonant frequency of its cavity is 9.467 GHz.

3. RESULTS AND DISCUSSION

3.1. Luminescence Spectra

The excitation and emission spectra of BaB_4O_7 : $0.02Eu^{3+}$ phosphors at room temperature are illustrated in Fig. 1.

The excitation spectrum has some sharp lines, and the strongest excitation peak is at 394 nm. These line excitation

¹ To whom correspondence should be addressed.

FIG. 1. Photoluminescence excitation (EX) and emission (EM) spectra of the Eu^{3+} ion in the BaB_4O_7 : 0.02 Eu^{3+} phosphor.

peaks are attributed to the 4f-4f transitions between the ground state of Eu³⁺ ion and its excitation states. The emission spectra of Eu³⁺ peaks are observed under 394 nm excitation. These emission spectra are attributed to the ${}^{5}D_{0}-{}^{7}F_{I}$ transitions in the Eu³⁺ ion, and the strongest emission peak is at 614 nm which is attributed to the ${}^{5}D_{0}$ - ${}^{7}F_{2}$ transition. In addition, we find a broad band emission spectrum whose maximum is at 452 nm in Fig. 1. We think this broad band is corresponding to Eu²⁺ according to its wavelength. The europium is an abnormal valency rare earth element, and the Eu^{2+} ion can exist in the BaB₄O₇ matrix under a certain condition more easily than that of Eu³⁺, because a charge compensation could take place when the Eu^{3+} ion enters the matrix. BaB_4O_7 is monoclinic. Its structure framework consists of a three-dimensional $(B_4O_7)_{\infty}$ network of BO₄ tetrahedral as the structure of EuB_4O_7 (6). The Eu atoms are located in a so-called cage formed by the BO₄ units of the $(BO_4)_{\infty}$ network. The Eu²⁺ ion can be stabilized in this structure, because the Eu²⁺ ions are completely surrounded by the BO₄ units of the $(BO_4)_{\infty}$ network, and are therefore hardly expected to be attacked by oxygen. Figure 2 shows the excitation and emission spectra of Eu^{2+} in the BaB₄O₇: 0.02Eu phosphor.

The excitation band of emission ($\lambda_{em} = 376$ nm) shows

FIG. 2. Photoluminescence excitation (EX) and emission (EM) spectra of the Eu^{2+} ion in the BaB_4O_7 : 0.02 Eu^{3+} phosphor.

FIG.3. Photoluminescence mission spectra of the BaB_4O_7 : 0.06Eu³⁺, 0.008Tb³⁺ phosphor under (a) 254 and (b) 365 nm excitation.

a broad band whose maximum is situated at 323 nm. Two emission broad bands of Eu^{2+} ions whose maxima are at 376 and 452 nm, respectively, are observed under 323 nm excitation, which is attributed to allowed electronic transitions from states of the $4f^{6}5d$ configuration to the ground state of $Eu^{2+} 4f^{7}$ (${}^{8}S_{7/2}$).

We investigate the luminescence spectra of the BaB₄O₇: 0.004Tb³⁺ phosphor. The emission spectrum of Tb³⁺ ion has some strong emission peaks, which are attributed to the transitions of the ${}^{5}D_{4}$ level. The four group emission peaks are observed. They are at 490, 543, 586, and 622 nm which correspond to ${}^{5}D_{4}{-}^{7}F_{6}$, ${}^{5}D_{4}{-}^{7}F_{5}$, ${}^{5}D_{4}{-}^{7}F_{4}$, and ${}^{5}D_{0}{-}^{7}F_{3}$ transitions, respectively, and the strongest emission spectra of Tb³⁺ is at 543 nm.

The emission spectra peaks of Eu^{3+} , Eu^{2+} , and Tb^{3+} ions are all observed in BaB_4O_7 : 6% Eu^{3+} , 0.8% Tb^{3+} phosphor under UV excitation, as seen in Fig. 3.

We find that the incorporation of the Tb^{3+} ion does not influence the wavelength position of Eu^{3+} , Eu^{2+} , and Tb^{3+} ions in the BaB_4O_7 : Eu, Tb phosphor, and the luminescence intensity of the Eu^{2+} ion is influenced by the incorporation of the Tb^{3+} ion. This is shown in Fig. 4.

The intensity of emission spectra of Eu^{2+} becomes stronger with the increasing of Tb^{3+} ion under UV excitation. This can be explained by the electron transfer reaction mechanism: Eu^{3+} and Tb^{3+} ions are a pair of conjugate

FIG. 4. Relative intensity of emission spectra of the Eu^{2+} ion in the $BaB_4O_7: 0.02Eu^{3+}$, $y\%Tb^{3+}$ phosphor under (a) 254 and (b) 365 nm excitation.

electronic configuration rare earth ions, and if they are codoped in the BaB₄O₇ matrix, an electron transfer may take place between Eu³⁺ and Tb³⁺ ions to get the more stable electronic configuration of $4f^7$ that is Eu²⁺ and Tb⁴⁺ ions, respectively. The Tb⁴⁺ ions have been proven to exist in fluoride systems (7).

3.2. ESR Spectra

In order to prove the electron transfer between Eu^{3+} and Tb^{3+} ions, we investigate the electron spin resonance spectra. Because Eu^{3+} is a non-Kramers ion, its ESR spectra should be silent at room temperature due to short spinlattice relaxation times. But the electron spin *S* of the Eu^{2+} ion is 7/2 and nuclear spin *I* is 5/2 for both ¹⁵¹Eu and ¹⁵³Eu; the characteristic hyperfine patterns due to the two isotopes can be used to identify Eu^{2+} . We investigate the ESR spectra of Tb_4O_7 at the certain condition and find no signal, so the ESR intensity can be used to detect the concentration of Eu^{2+} in matrices. Figure 5 shows the signals of Eu^{2+} ion in $BaB_4O_7:0.02Eu$, *y*Tb phosphors.

The results given by the ESR spectra are in agreement with those from the fluorescence spectra. In BaB₄O₇:0.02Eu, *y*Tb phosphors, the intensity of ESR spectra peaks corresponding to Eu^{2+} increases with the concentration of Tb³⁺ increasing, so the concentration of the Eu²⁺ ion increases.

In summary, the luminescence and ESR spectra show that there is an electron transfer between Eu^{3+} and Tb^{3+} ions, if they are codoped in BaB_4O_7 , so Eu^{3+} , Eu^{2+} , and Tb^{3+} ions can coexist in one matrix. If we appropriately readjust the concentration of Eu^{3+} and Tb^{3+} ions to enhance the emission intensity of Tb^{3+} ion, we probably get a new kind of valuable lamp phosphor that two rare earth

MAGNETIC FIELD B (mT)

FIG. 5. ESR spectra of Eu^{2+} in BaB₄O₇:0.02Eu, y%Tb phosphors.

ions are codoped in one matrix that is synthesized in air atmosphere.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China.

REFERENCES

- C. S. Shi and Q. Su, "The Chemistry and Physics of Abnormal Valency Rare Earth Elements." Science Press, Beijing, 1994.
- R. Jagannathan, R. P. Rao, and T. R. N. Kutty, *Mater. Res. Bull.* 27, 459 (1992).
- W. J. Schipper, D. Van der voort, Pvan den Berg, Z. A. E. P. Vroon, and G. Blasse, *Mater. Chem. Phys.* 33, 311 (1993).
- 4. W. J. Schipper, A. Meijerink, and G. Blasse, J. Lumin. 62, 55 (1994).
- Annapoorna Akella and Douglas A. Keszler, *Mater. Res. Bull.* 30(1), 105 (1995).
- Ken-Ichida Machida, Gin-Ya Adachi, and Jiro Shiokawa, Acta Crystallogr. Sect. B 36, 2008 (1980).
- 7. Y. Wu and C. S. Shi, Solid State Commun. 95(5), 319 (1995).